
The n-tuple Classi�er: Too Good to IgnoreMicha l Morciniec and Richard RohwerDept. of Computer Science and Applied MathematicsAston UniversityBirmingham, UK B4 7ETJune 15, 1995AbstractThe n-tuple pattern recognition method has been tested using a selection of 11 largedata sets from the European Community StatLog project, so that the results couldbe compared with those reported for the 23 other algorithms the project tested. Theresults indicate that this ultra-fast memory-based method is a viable competitor withthe others, which include optimisation-based neural network algorithms, even thoughthe theory of memory-based neural computing is less highly developed in terms ofstatistical theory.1 IntroductionA popular style of neural computation is to apply optimisation techniques to suitably de-signed neural network models. This has the advantages of good performance and reasonably�rm theoretical underpinnings, but often su�ers from hefty computational requirements. Analternative style is based on memorisation of randomly selected features. Although the the-ory is less well-developed, such methods o�er an overwhelming advantage in computationspeed. One of the oldest memory-based methods is the n-tuple classi�er of Bledsoe andBrowning (Bledsoe & Browning, 1959). This method was tested on 11 data sets which hadbeen previously used by the European Community ESPRIT StatLog project (Michie et al.,1994) to test 23 other classi�cation algorithms. The results add to a body of practical ex-perience (Rohwer & Cressy, 1989; Tarling & Rohwer, 1993; Aleksander & Stonham, 1979),which lends weight to the view that more sophisticated methods often have no performanceadvantage to o�er. Such methods include popular neural network methods with bettertheoretical foundations, such as the multi-layer perceptron and radial basis functions. Itwould appear that memory-based methods deserve more intensive study.1



2 The n-tuple recognition methodThe n-tuple recognition method is also known as a type of \RAMnet"1 or \weightlessneural network". It forms the basis of a commercial product (Aleksander et al., 1984).It is a method for classifying binary patterns, which can be regarded as bit strings ofsome �xed length L. This is not an important restriction, because there is an e�cientpreprocessing method, tailored to the RAMnet's generalisation properties, for convertingscalar attributes into bit strings. This method is de�ned in section 5. This section de�nesthe n-tuple classi�cation algorithm itself.Several (let us say N) sets of n distinct2 bit locations are selected randomly. These are then-tuples. The restriction of a pattern to an n-tuple can be regarded as an n-bit numberwhich, together with the identity of the n-tuple, constitutes a `feature' of the pattern. Thestandard n-tuple recogniser operates simply as follows:A pattern is classi�ed as belonging to the class for which it has the mostfeatures in common with at least 1 training pattern of that class. (1)This is the � = 0 case of a more general rule whereby the class assigned to unclassi�edpattern u is argmaxc  NXi=1 ��  Xv2Dc ��i(u);�i(v)!! (2)where Dc is the set of training patterns in class c, ��(x) = x for 0 � x � �, ��(x) = � forx � �, �i;j is the Kronecker delta3 (�i;j = 1 if i = j and 0 otherwise.) and �i(u) is the ithfeature of pattern u: �i(u) = n�1Xj=0 u�i(j)2j: (3)Here uk is the kth bit of u and �i(j) is the jth bit location of the ith n-tuple.With C classes to distinguish, the system can be implemented as a network of NC nodes,each of which is a random access memory (RAM); hence the term RAMnet. The memorycontent mci� at address � of the ith node allocated to class c is set tomci� = ��  Xv2Dc ��;�i(v)! : (4)In the usual � = 1 case, the 1-bit content of mci� is set if any pattern of Dc has feature �and unset otherwise. Recognition is accomplished by summing the contents of the nodesof each class at the addresses given by the features of the unclassi�ed pattern. That is,pattern u is assigned to class argmaxc  NXi=1mci�i(u)! : (5)1RAMnets also include stochastic generalisations, pRAMs, to which the n-tuple recognition algorithm isnot applied. These are not considered here.2Relaxing the requirement that an n-tuple has n di�erent bit locations amounts to introducing a mixtureof di�erently sized n-tuples. Note the restriction does not disallow a single pattern component from beingshared by more than one n-tuple.3The comma is unconventional but is used here for extra clarity.2



3 Discussion of the algorithmThe n-tuple classi�er is a memory-based method akin to Kanerva's Sparse DistributedMemory (Kanerva, 1988). Such methods di�er from optimisation-based methods, such asBack Propagation of error through multi-layer perceptrons, in two important ways. Firstly,\Hidden" representations (or \features") are selected randomly, and secondly, training isa simple memorisation task involving these features. These di�erences give memory-basedmethods an awesome advantage in training speed. Radial Basis Functions obtain partof this speed advantage by selecting features randomly (Broomhead & Lowe, 1988), andmulti-layer perceptrons can often be trained faster with little or no loss of performanceby using �xed random weights into the hidden layers (Gallant & Smith, 1987; Sutton &Whitehead, 1993). However, this does not give the speed and simplicity that training bymere memorisation provides.There is some theoretical understanding of memory-based models, and the n-tuple methodin particular (Aleksander & Stonham, 1979; Flanagan et al., 1992; Bledsoe & Bisson, 1962;Ullmann & Dodd, 1969), but not at the level of statistical sophistication available foroptimisation-based methods (MacKay, 1992). Although an n-tuple network can be trainedusing optimisation instead of memorisation (Luttrell, 1992; Rohwer, 1994), the statisticaltools which can then be brought to bear have so far failed to comprehensively explain andquantify the success of memorisation alone. Perhaps the experimental results reported herewill encourage further e�ort in this area.It is interesting to note that their sheer simplicity may make memory-based methods lessbiologically implausible than optimisation-based methods. Of course, the n-tuple methoditself uses features specialised to digital hardware, but the principle may apply just as wellto more biologically computable features.4 The architectural parameters.The adjustable parameters of the n-tuple recognition method are the n-tuple size n, thenumber of n-tuples N , and the threshold �. These are architectural parameters, and aswith many other neural network algorithms, there is a shortage of theoretically convincingprescriptions for setting them. One can argue on the basis of sampling uctuations thatresults should improve towards an upper bound with increasing N . Practical experienceshows values of 100 to 1000 to be adequate. The optimal settings for n and � are related to(among less measurable things) the amount of training data used. If n and � are both toosmall, then one can easily end up with \saturation", a condition in which the recogniserfails because mci� � � everywhere (Tarling & Rohwer, 1993). Having n large is thoughtto be good in that correlations among several bits of the pattern might be relevant toclass discrimination, but if the size of the address space for each node (2n) is too largecompared to the number of training patterns, then performance can decline due to overlysparse memory usage(Ullmann, 1969; Rohwer & Lamb, 1993). Experience with data setsof up to a few thousand patterns indicates that n should be between about 3 and 8, andperformance is almost always best with � = 1. Although better theoretical work on the3



n-tuple recognition algorithm would be highly desirable, the algorithm's high speed makesit entirely practical to just run a few tests with a few plausible parameter settings to �ndsuitable ones.5 Preprocessing of scalar attributesA RAMnet classi�es bit strings, but the attributes of the patterns in the StatLog data setsare mostly real numbers or integers. It is known (Aleksander & Stonham, 1979) that thegeneralisation behaviour of RAMnets is based on a generalised Hamming distance betweenbit strings. Given that generalisation from numerical attributes should be related to arith-metic di�erences, it is important to transform numbers into bit strings in such a way thatnumerical proximity is transformed into Hamming proximity. A memory-e�cient methodtailored to the generalised Hamming distance underlying RAMnet generalisation has beenprovided by Allinson (Allinson & Ko lcz, 1993), using a combination of CMAC and Graycoding techniques. The prescription for encoding integer x is to concatenate K bit strings,the jth of which is x+j�1K , rounded down and expressed as a Gray code. The Gray code ofan integer i can be obtained as the bitwise exclusive-or of i (expressed as an ordinary base 2number) with i=2 (rounded down). This provides a representation in aK bits of the integersbetween 0 and (2a � 1)K inclusive, such that if integers x and y di�er arithmetically by Kor less, their codes di�er by Hamming distance jx � yj, and if their arithmetic distance isK or more, their corresponding Hamming distance is at least K.In the experiments reported here, K = 8 and a = 5, giving 40-bit representations of theintegers in [0; 248]. All scalar attributes were linearly rescaled and rounded to obtain integersin this interval. In the Letter data set (See Table 1.), where the attributes can take on only16 values, it would be more reasonable to use a one-out-of-N encoding with strings of 16bits, but the CMAC/Gray procedure was used anyway for the convenience of uniformity.6 Selection and pre-processing of StatLog data setsThe European Community ESPRIT project 5170, the StatLog project, was designed tocarry out comparative testing and evaluation of classi�cation algorithms on large scaleapplications. About 20 data sets were used to estimate the performance of 23 procedures.These are described in detail in (Michie et al., 1994). Each of the larger data sets (withmany more than 1000 samples) were randomly split into training and testing partitions.Di�erent methodologies (cross-validation and bootstrap) were applied to the smaller datasets. This study used the large data sets, which are summarised in table 1. There are 11 ofthese. 4



Name Largest Prior Training Patterns DescriptionClasses Attributes Testing PatternsBelgianII 2 0.924 57 real 2000 1000 Classify measurements on simulatedlarge scale power system as leading tostable or unstable behaviour.Cut50 2 0.941 50 real 11220 7480 50 measurements from a candidate seg-mentation point in joined handwrittentext. Classify as suitable cut point ornot. Commercially con�dential data.Cut20 2 0.941 20 real 11220 7480 Best 20 attributes (by stepwise regres-sion) from Cut50.Technical 91 0.230 56 4500 2580 Commercially con�dential. Appears tobe generated by a decision tree. Mostattribute values are 0.DNA 3 0.525 240 Boolean 2000 1186 Sequences of 60 nucleotides (4-valued)classi�ed into 3 categories.SatIm 6 0.242 36 integer 4435 2000 3x3 pixel regions of Landsat images. In-tensities in 4 spectral bands. Classi�edinto 6 land uses at central pixel.Chromo 24 0.044 16 1250 1250 Images of Chromosomes, reduced to 16features.BelgianI 2 0.5664 28 real 1250 1250 As Belgian II with a smaller simulation.Attributes thought to be least informa-tive omitted from simulation.Tsetse 2 0.508 14 real 3500 1499 Classify environmental attributes forpresence of Tsetse ies.Letter 26 0.045 16 16-valued 15000 5000 Images of typed capital letters, de-scribed by 16 real numbers discretisedinto 16 integers.Shuttle 7 0.784 9 real 43500 14500 Classi�cation problem concerning posi-tion of radiators on the Space Shuttle.Noise-free data.Table 1: Descriptions of data sets used.
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7 ExperimentsThe threshold � was set to 1 in all the experiments reported here, and N was set to 1000n-tuples. Each experiment was repeated for a selection of small n-tuple sizes. The re-sults reported are averages over 10 di�erent random input mappings � for the best n. Thisinvolves using test data to set an architectural parameter, so strictly speaking, these experi-ments do not show generalisation performance purely and directly. However, the subsequentre-randomisation of the input mapping completely scrambles the network connectivity, com-pletely re-de�ning the random features used for discrimination. Thus, the experiments dodemonstrate generalisation from one input mapping to another, for a given n, and it isdi�cult to argue that new test data randomly drawn from the same distribution will havea more severe e�ect than selecting new features randomly from the same data. Hence thisprocedural expedient was felt justi�ed.Computation time requirements were insigni�cant in these experiments, which were carriedout with a C++ program on a SUN Sparc workstation. For example, an 8-tuple networkcan be trained on the 2000 57-attribute training patterns of the BelgianII data set in about49 seconds. Sixteen of these seconds are needed just to read in the data; another 4 to dothe CMAC/Gray conversion of the oating point attributes; and the �nal 29 to train theRAMnet itself. Testing the same 2000 patterns takes slightly longer, 37 seconds insteadof 29, because a loop over classes is needed within the loop over n-tuples. Detailed timingstatistics are not published for the algorithms used in the StatLog project, but it is clearthat popular neural network algorithms such as Back Propagation and even the relativelyfast Radial Basis Functions are slow by comparison. The algorithm is highly parallelisable,so if it were important for the RAMnet to be even faster, special purpose parallel hardwarecould be designed or purchased (Aleksander et al., 1984).The storage requirements were moderate in most cases. In the most extreme case (Shuttle)128kB of RAM per class was needed.8 ResultsThe classi�cation results for each algorithm attempted with each data set are presentedin �gure 1. Table 2 gives a brief description of each algorithm with the symbol used torepresent it in the �gure. The classi�cation error rates increase from left to right, and arescaled separately for each data set, so that they equal 1 at the error rate of the trivialmethod of always guessing the class with the highest prior probability, ignoring the inputpattern.As remarked in section 7, the results plotted for the n-tuple recognition algorithm are aver-ages over 10 randomly selected input mappings. If the corresponding standard deviationswere plotted as error bars in �gure 1, they would be obscured by the dots representing themeans.On its best 7 data sets, the RAMnet gave performance broadly comparable to most otheralgorithms, including the popular neural network methods of Back Propagation and Radial6



RAMnets.(�) n-tuple recogniser.Discriminators.(|) Back Propagation in a 1-hidden-layer MLP.(�) Radial Basis Functions.(~) Cascade Correlation.(�) SMART (Projection persuit).(
) Dipol92 (based on pairwise linear discriminators).(	) Logistic discriminant.(�) Quadratic discriminant.(�) Linear discriminant.Methods related to density estimation.(�) CASTLE (Probabilistic decision tree).(�) k-NN (k nearest neighbors).() LVQ (Learning Vector Quantisation).(�) Kohonen topographic map.(") NaiveBayes (Estimate assuming independent attributes).(�) ALLOC80 (Kernal function density estimator)Decision trees.(a) NewID (Decision Tree)(b) AC2 (Decision Tree)(c) Cal5 (Decision Tree)(d) CN2 (Decision Tree)(e) C4.5 (Decision Tree)(f) CART (Decision Tree)(g) IndCART (CART variation)(h) BayesTree (Decision Tree)(i) ITrule (Decision Tree)Table 2: Synopsis of Algorithms with symbols used in Figure 1.
7
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Figure 1: Results for N-tuple (�) and other algorithms. Algorithm codes appear in Table 2.Classi�cation error rates increase from left to right, and are scaled separately for each dataset, so that they equal 1 at the error rate of the trivial method of always guessing the classwith the highest prior probability, ignoring the input pattern. The arrows indicate the fewcases in which performance was worse than this.8



Basis Functions. Sometimes it did rather better and sometimes rather worse, but neverby an alarming margin. The relative performance of the other methods jumps around to asimilar extent, as well as the eye can judge. A more sophisticated attempt to �nd systematicperformance di�erences between the StatLog algorithms (Michie et al., 1994) did not turnup much which cannot be gathered from such judgements by inspection.The worst 4 data sets for the RAMnet tell a di�erent story. Most algorithms did poorlyon these data sets, but the RAMnet failed spectacularly. It did scarcely better than themethod of assigning every test pattern to the a priori most probable class. The only goodnews is that these results suggest the hypothesis that if the RAMnet is used on a new typeof data, it can be relied upon to either do reasonably well, or perform so badly that itsunsuitability will be obvious.Further research is needed to determine precisely what sort of data a RAMnet can han-dle, but these results suggest a couple of guesses. One possibility is that a highly skeweddistribution of class priors is problematic, because the BelgianII, Cut50, and Cut20 datasets have most probability concentrated on 1 of their 2 classes, and the Technical data setconcentrates a quarter of its probability on just 1 of its 91 classes. But the RAMnet didwell on the Shuttle data, which is also rather skewed. Another possibility is that poorlyinformative attributes are a problem. A comparison between the BelgianI and BelgianII re-sults particularly suggests this, because BelgianI uses a subset of the attributes of BelgianII,selected according to an expert's opinion of their informativeness.9 ConclusionsIt would be inappropriate to use the results in �gure 1 to draw unequivocal conclusionssuch as \RAMnets perform better than multi-layer perceptrons on the Letter data set",because there is usually scope for improving any method by fussing with its parameters andimplementational details. But a glance at this �gure does seem to justify the conclusionthat RAMnets often perform well compared to other methods. Consequently it would seemfoolish to embark on an hours-long Back Propagation run before spending a minute with aRAMnet simulation.The results suggest a few hypothesis which might be considered by future theoretical andexperimental work. These are that the n-tuple recognition method fails completely andobviously when it does fail, that it fails when the pattern attributes are relatively uninfor-mative, and that highly skewed class priors can be a contributing factor to failures.It would appear that memory-based learning algorithms in general, and the n-tuple classi�erin particular hold great promise as ultra-fast systems giving competitive performance formany types of data. This lends some urgency to the problem of strengthening the theoreticalfoundations of these techniques. 9
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