
What is Structure?

Structure is a description of the dependencies
Dependencies mean constraints
Un-structured means no constraints
Constraint means subset



No Structure



Structure



Description of Structure

Language by which the structure can be described
Observed data is a sampled perturbed ideal
Description is inexact

Closeness of the description to the observed data
Length of the description



Truth and Lies

Truth
Language is able to describe some of the underlying data
structure

Lies
What the language cannot describe is a lie by omission
Description is an estimate
Estimated structures have a random component
The difference between the true underlying structure and
the estimated structure



Linear Regression Language

Data: x1, . . . , xK

Dimension: xk = (x1
k , . . . , x

N
k ) ∈ RN

Dependency: xN
k =

∑N−1
n=1 αnxn

k

Error: ε2
k =

∣∣∣xN
K −

∑N−1
n=1 αnxn

k

∣∣∣2
Assumption: All points arise from the same process

All observations have the same dependency



Example

Population
Healthy
Illnesses A1, . . . ,AK

It is not known how many illnesses there are
Each person is measured with N lab tests
The structure of the data is the inter-relationship(s)
between the values of the lab tests
Linear Regression is the wrong Language



Example Test Report
Alkaline Phosphatase 58 IU/L 25-150
Bilirubin Total 0.4 mg/dL 0.0-1.2
A/G Ratio 1.7 1.1-2.5
Globulin Total 2.5 g/dL 1.5-4.5
Albumin, Serum 4.3 g/dL 3.5-5.5
Protein, Total Serum 6.8 g/dL 6.0-8.5
Phosphorus, Serum 3.6 mg/dL 2.5-4.5
Calcium, Serum 9.3 mg/dL 8.7-10.2
Carbon Dioxide, Total 21 mmol/L 20-32
Chloride, Serum 105 mmol/L 97-108
Potassium, Serum 4.1 mmol/L 3.5-5.2
Sodium, Serum 140 mmol/L 134-144
BUN/Creatinine Ratio 19 9-20
eGFR If Africn Am 126 mL/min/1.73 >59
eGFR If NonAfricn Am 109 mL/min/1.73 >59
Creatinine, Serum 0.81 mg/dL 0.76-1.27
BUN 15 mg/dL 6-24



Point Clusters



Hyperbolic Clusters



Elliptic Clusters



Manifold Clusters



Manifold Clusters



Manifold Clusters



Cluster Models

database 2hyper-spherical hyper-ellipsoidal arbitrary shaped

linear nonlinear



Subspace Clusters

Consists of a subset of points and a corresponding subset of
variables, such that these points form a dense region in a
subspace defined by the set of corresponding variables.
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CLIQUE (Agrawal 98), MAFIA (Nagesh 99),PROCLUS (Aggarwal 99)
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Arbitrary Oriented Subspace Clusters

Consists of a subset of points and a corresponding linear
combination of a subset of variables, such that these points form
a dense region in a subspace defined by the set of
corresponding linear combinations of variables.
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ORCLUS (Aggarwal 00)



Arbitrary Oriented Subspace Clusters

Consists of a subset of points and a corresponding linear
combination of a subset of variables, such that these points form
a dense region in a subspace defined by the set of
corresponding linear combinations of variables.
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Arbitrary Oriented Subspace Clusters

Consists of a subset of points and a corresponding linear
combination of a subset of variables, such that these points form
a dense region in a subspace defined by the set of
corresponding linear combinations of variables.
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Pattern (Correlation) Clusters

Consists of as a subset of objects and variables for which the
participating objects show a similar trend rather than being close
to each other.

x y z

Bicluster (Cheng 00),Floc (Yang 02),pCluster (Wang 02)



Linear Manifold Clusters

Definition
L is a linear manifold of vector space V if and only if for some
subspace S of V and translation t ∈ V ,

L = {x ∈ V |for some s ∈ S, x = t + s}

The dimension of L is the dimension of S, and if the dimension
of L is one less than the dimension of V then L is called a
hyperplane.

A linear manifold is, in other words, a subspace that may have
been shifted away from the origin.

A subspace is a linear manifold that contains the origin.
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Dense Linear Manifold Clusters
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The Linear Manifold Cluster Model

The cluster model has the following properties:
The points in each cluster lie close to a low dimensional
linear manifold.

The intrinsic dimensionality of the cluster is the
dimensionality of the linear manifold.
The manifold is arbitrarily oriented.
The points in the cluster induce a correlation among two or
more attributes (or linear combinations of attributes) of the
data.
In the orthogonal complement space to the manifold the
points form a compact densely populated region, which
can be used to cluster the data.
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The Linear Manifold Cluster Model

Comment
Classical clustering algorithms such as K-means assume that
each cluster is associated with a zero dimensional manifold
(the center) and therefore omit the possibility that a cluster may
have non-zero dimensional linear manifold associated with it.



The Linear Manifold Cluster Model

Definition

Let D be a set of N-dimensional points in RN

C ⊆ D a subset of points that belong to a cluster
x some point in C
b1, . . . ,bN an orthonormal set of vectors that span RN

(bi , . . . ,bj) a matrix whose columns are the vectors
bi , . . . ,bj

µ some point in RN

Then each x ∈ C can be modeled by,

x = µ+ (b1, . . . ,bm)λ+ (bm+1, . . . ,bN)ψ



The Linear Manifold Cluster Model

x = µ+ (b1, . . . ,bm)λ
m×1 + (bm+1, . . . ,bN)ψ

N−m×1

x = µ+ BN×mλm×1 + BN×N−m
c ψN−m×1

The idea is that each point in a cluster lies close to a
m-dimensional linear manifold, defined by µ+ span{b1, . . . ,bm}.

λm×1 models the spread of the points in the manifold

Each entry of the m × 1 random vector λ is i.i.d.
U(−R/2,+R/2)
In the manifold points are uniformly distributed in each
direction



The Linear Manifold Cluster Model

x = µ+ (b1, . . . ,bm)λ
m×1 + (bm+1, . . . ,bN)ψ

N−m×1

x = µ+ BN×mλm×1 + BN×N−m
c ψN−m×1

ψN−m×1 a small perturbation associated with each point in the
cluster. The idea is that each point may be perturbed in
directions that are orthogonal to the manifold, i.e., the vectors
bm+1, . . . ,bN .

This is modeled by requiring that the (N − m)× 1 random vector
ψ ∼ N(0, Σ), where the largest eigenvalue of Σ is much smaller
than R.

Since the variance along each of these directions is much
smaller than the range R of the embedding, the points are likely
to form a compact and densely populated region.



The Algorithm

Main Idea

1 Sample minimal subsets of points to construct trial linear
manifolds of various dimensions.

2 Compute distance histograms of the data to each trial manifold.
3 Of all the manifolds constructed, select the one whose

associated histogram shows the best separation between a
mode near zero and the rest of the data.

4 Partition the data based on the best separation.
5 Repeat the procedure on each block of the partitioned data.
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How are trial manifolds sampled?

To construct an m-dimensional manifold we need to sample m + 1 points.

Example- constructing a 2D manifold
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How are the trial manifolds sampled?

x
0

x
1

x
2

µ = x0

B̂ = (b̂1, b̂2) = (x1 − x0, x2 − x0)

B = orthonormal B̂
dist(x) = ‖(I − BB′)(x − µ)‖



Selecting the best trial manifold/best separation
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To compute a separation score we first need to find the two
classes or distributions involved.

This problem is cast into histogram thresholding problem.
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Selecting the best trial manifold
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Kittler and Illingworth Minimum Error Thresholding (86)
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Empirical Evaluation

Evaluation Criteria:
Accuracy
Efficiency and Scalability
Stability

Data Sets:
Synthetic
Real

Algorithms Compared Against:
DBSCAN O(N2d) (Ester at el. 96)
ORCLUS O(K 3 + kNd + K 2d3) (Aggarwal 00)
HPCluster (Haralick at el. 04)



Empirical Evaluation- Accuracy

size clusters dim LM dim LMCLUS ORCLUS DBSCAN HPCluster
D1 3000 3 4 2-3 95% / 0:0:08 80% / 0:0:22 34.6% / 0:0:9 72% / 0:0:51
D2 3000 3 20 13-17 98.4% / 0:0:33 58.8% / 0:2:18 65.5% / 0:0:36 97.4% / 0:1:39
D3 30000 4 30 1-4 100% / 0:15:38 64.9% / 1:5:30 100% / 1:31:52 99.3% / 0:1:32
D4 6000 3 30 4-12 99.9% / 0:9:22 98.3% / 0:8:20 66.5% / 0:3:49 97.1% / 0:0:12
D5 4000 3 100 2-3 100% / 0:0:20 87.9% / 0:54:30 65.3% / 0:5:24 99% / 0:3:54
D6 90000 3 10 1-2 99.99% / 0:0:29 100% / 0:29:02 66.7% / 4:58:49 100% / 0:1:23
D7 5000 4 10 2-6 99.24% / 0:2:05 99.3% / 0:2:41 74.1% / 0:0:54 96% / 0:0:35
D8 10000 5 50 1-4 99.9% / 0:1:42 63.64% / 1:33:52 100% / 0:17:00 99.2% / 0:3:43
D9 80000 8 30 2-7 99.9% / 3:12:46 96.9% / 13:30:30 100% / 10:51:15 99.9% / 0:4:57
D10 5000 5 3 1-2 86.5% / 0:0:48 68.2% / 0:0:45 59.6% / 0:0:5 78% / 0:0:33
∗D11 1500 3 3 1 98.5% / 0:0:01 99.6% / 0:0:10 42.6% / 0:0:02 33.3% / 0:0:52
∗D12 1500 3 3 2 97% / 0:0:02 99% / 0:0:11 33.8% / 0:0:02 33.3% / 0:0:26
∗D13 1500 3 7 3 97.7% / 0:0:05 99.1% / 0:0:17 33.9% / 0:0:04 33.3% / 0:0:34
∗D14 5000 5 20 4 99.9% / 0:5:46 100% / 0:10:42 21.1% / 0:1:39 20% / 0:1:30
∗D15 4000 4 50 3 99% / 0:9:14 100% / 0:25:52 25% / 0:2:34 25% / 0:3:20

1



Empirical Evaluation- Efficiency and Scalability

O(N2K 2L3d)
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Empirical Evaluation- Stability

LMCLUS ORCLUS
1st data set mean 99.1 92.1

median 99.9 95.5
std 4.7 10.56

2nd data set mean 97.36 99.26
median 97.4 99.47

std 0.0053 0.0049
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Time Series Clustering (UCI KDD Archive)

600× 60, A-decreasing trend, B-cyclic, C-normal, D-upward shift,
E-increasing trend, F-downward shift.

in1 in2 in3 in4 in5 in6 total
out1 0 0 0 57 0 0 57
out2 0 0 80 0 1 0 81
out3 0 0 0 43 0 99 142
out4 0 0 20 0 98 0 118
out5 99 0 0 0 0 0 99
out6 0 41 0 0 0 0 41
out7 0 23 0 0 0 0 23
out8 1 36 0 0 1 1 39
total 100 100 100 100 100 100 600

Total Correct=533 Accuracy=88.8333

1

model: x = µ+ 1φ+ψ
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E3D Point Cloud Segmentation (ALPHATECH Inc.)



When to Stop

Clustering Techniques Have A Variety of Ways

Specify Number of Clusters
Specify Minimum Cluster Size
Specify a Minimum Quality Score for a Cluster



Minimum Description Length

Clustering details the Structure of the data
The Structure of the data should be more compact that a
list of coordinates of each data point
Good Clustering

The Description Length needed for describing the structure
of the data is less



Manifold Cluster Description Length

Description Length for Manifold
Description Length for points projected to the manifold
Error Toleration Parameter
Description Length for point perturbation off the manifold

To within Error Tolerance



Manifold Description Length

1: Dimension K of Cluster
N: Offset vector from origin
Orthonormal Manifold basis set

Basis Vectors KN
Norm 1: K constraints
Orthogonality: K(K−1)

2 constraints
KN − K(K+1)

2 numbers
Each number B bits

Total: B[1 + N + K (N − K+1
2 )]



Manifold Cluster Description Length

M Data points on a manifold are described by their
manifold coordinates
A Data Point in a K -dimensional manifold has K
coordinates
The K coordinates are the coefficients of its basis vector
representation xN×1 = µN×1 + BN×KλK×1

An observed data point is near but not on the manifold
Determine the number of bits that it would take to encode
the perturbation that brings a point from its coordinates on
the manifold to its associated observation off the manifold
to within the Error Tolerance
Entropy E of the N − K perturbation distribution
Total: MK + E



Quality Score

X = BMN: Number of bits to represent the M data points
of a cluster in its original representation

Y = B[1+N +K (N − (K+1)
2 ) +BKM +E : Number of bits to

represent the M data points in the manifold cluster
If Y << X keep the cluster



Climate Data

1
2
◦
, 1◦,2◦

A few decades
By Month

Average Temperature
Average Precipitation

24-Dimensional



Climate Zones Ground Truth

Done manually
Ground Truth Data is known to be faulty



Linear Manifold Clusters

Done automatically
Temperature and Precipitation


